Link Search Menu Expand Document

Seeedstudio - SenseCap-S2103

The SenseCap S2103 is a LoRaWAN indoor/outdoor sensor to measure temperature, humidity and CO2


Table of contents

  1. Specifications
  2. Documents/Links
  3. Ordering Info
  4. Device specific Information
    1. LED States
  5. Adding the Device to TTN
  6. Change Device Settings
  7. Payload formatter

Specifications

  • indoor/outdoor device
  • Price ca. CHF 145.- (09.08.2023)
  • Sensors
    • Temperature, -40 … +85 [°C], ± 0.2 °C, Resolution 0.01 °C, Long term drift < 0.03 °C/year
    • relative Humidity, 0 … 100[%rH], ± 1.8, Resolution 0.01 %rH, Long term drift < 0.25 %RH/year
    • CO2, 400 … 10’000 [ppm], ±(30 ppm +3% of reading) , extended range ±10% of reading, Resolution 1 ppm
  • Power Supply: 1 Li-SOCl2, ER34615, 3.6V, 19’000 mAh
    • Expected life time: depending on usage, 5 … 10 years
  • LoRaWAN version: 1.0.3
  • LoRaWAN device class: A
  • Protection: IP66
  • Operating Temperature: 0 … +50 °C ( Effective measurement range of CO2)
  • Size: 184.2 × 63 × 63.7 mm
  • Weight: 452 g


Ordering Info


Device specific Information

LED States

2-in-1 Configuration Button and LED

ActionDescriptionGreen LED Status
First power up, press and hold for 3sPower on and activate the BluetoothLED flashes at 1s frequency, waiting for Bluetooth connection. If Bluetooth not connected within 1 minute, the device will shut downagain
Press onceReboot device and join LoRa network1. The LEDw ill be onfor 5 seconds for initialization
2. Waiting to joinLoRa network: breathing light flashing
3. Join LoRa network success: LED flashes fast for 2s
4. LoRa network joinfailure: LEDsuddenlystop.
Press and hold for 3sActivate Bluetooth again1. Waiting for Bluetooth connection: LEDflashes at 1s frequency
2. Enter configurationmode after Bluetooth connection is successful: LED flashes at 2s frequency

If Bluetooth is not connected within 1 minute, the device will reboot and join Lora network.
Press and hold for 9sPower offIn the 3rd seconds will start flashing at 1s frequency, until the light is steady on, release the button, the light will go out.

Note
After power off, you need to reconfigure the frequency band. Power off is recommended when not deployed.


Adding the Device to TTN

  • Configure the device via Bluetooth with the SenseCAP Mate App. See User Guide chapter 5.2 for details
  • Copy the JoinEUI, App EUI and the DevEUI and send it from the smartphone via E-Mail to your computer.
  • Before a device can communicate via “The Things Network” we have to add it to an application.
  1. Create a new application
  2. Under End devices in the application click (+) Register end device
  3. Under Input method select Enter end device specifics manually
  4. Under Frequency plan select Europe 863-870 Mhz (SF9 for RX2 - recommended)
  5. Under LoRaWAN version select 1.0.3
  6. Under JoinEUI enter the App EUI from the App and press Confirm
  7. Enter as well the DevEUI and the AppKey from the App
  8. Set an end-device name
  9. Press Register end device
  10. Switch on the device
  • After Configuration, the device restarts automatically and tries to join the network
  • Now the device should join the network and you can see the incoming telegrams in the Live data section
  • The payload formatter you can copy/paste from below

Change Device Settings

  1. Connect to the device
  2. Choose configuration mode Device Firmware Update and Update the Firmware
  3. Connect again after update and choose under configuration mode Advanced Configuration
  4. Go to tab Settings
  5. Under Platform choose The Things Network (Attention, dont choose “SenceCAP for The Things Network”)
  6. Under Frequency Plan choose EU868
  7. Under Upling Interval (min) choose 10
  8. Under Activation Type choose OTAA (Over the air activation)
  9. Under Packet Policy choose 2C+1N (Over the air activation)
  10. Press Send
  • After Configuration, the device restarts automatically and tries to join the network

Payload formatter

function hexToDec(hex) {
    return parseInt(hex, 16);
}

function extractValue(payloadRaw, tag, nextTag = null, byteLength = 4) {
    if (!payloadRaw.includes(tag)) return null;

    let segment = payloadRaw.split(tag)[1];
    if (nextTag && segment.includes(nextTag)) {
        segment = segment.split(nextTag)[0];
    }

    const expectedLength = byteLength * 2;
    segment = segment.substring(0, expectedLength);

    const bytePairs = segment.match(/[a-fA-F0-9]{2}/g);
    if (!bytePairs || bytePairs.length !== byteLength) return null;

    const reversed = bytePairs.reverse().join('');
    return hexToDec(reversed);
}

function bytesToHexString(bytes) {
    return bytes.map(b => b.toString(16).padStart(2, '0')).join('').toUpperCase();
}

function decodeUplink(input) {
    try {
        const bytes = input.bytes;
        const payloadRaw = bytesToHexString(bytes);
        const decoded = {};

        // CO2 (010410 ... /1000)
        const co2Val = extractValue(payloadRaw, "010410", "010110", 4);
        if (co2Val !== null) {
            decoded.co2_ppm = co2Val / 1000;
        }

        // Temperature (010110 ... /1000)
        const tempVal = extractValue(payloadRaw, "010110", "010210", 4);
        if (tempVal !== null) {
            decoded.temperature_degrC = tempVal / 1000;
        }

        // Humidity (010210 ... /1000)
        const humVal = extractValue(payloadRaw, "010210", "0700", 4);
        if (humVal !== null) {
            decoded.humidity_perc = humVal / 1000;
        }

        // Battery (000700 ... %, 2 bytes)
        const battVal = extractValue(payloadRaw, "000700", null, 2);
        if (battVal !== null) {
            decoded.battery_perc = battVal;
        }

        // Optional: Debug raw payload (for dev/console)
        // decoded._debug_payloadRaw = payloadRaw;

        return { data: decoded };
    } catch (e) {
        return { data: null, error: e.message };
    }
}