
EMU - Professional II
- Manufacturer: EMU Electronic AG
- Product: Professional II 3/5 LoRa
The EMU Professional II is a 3-Phase Energy Meter with MID B+D approval, measures current over transformers or direct.
Table of contents
- Specifications
- Documents
- Link
- Ordering Info
- Device specific Information
- Original Payload formatter EMU
- Adapted Payload formatter HSLU for only one value with specific name
Specifications
- Price ca. CHF 700.- (details on request)
- Display: 38x28 mm graphic LC with LED backlighting
- Current transformer ratio (5/5A to 20,000/5A or 1/1A to 4,000/1A)
- Measurement data points:
- Current (total & pro Phase)
- Voltage (L1–L3)
- Power Factor (L1–L3)
- Active & Reactive Energy Import/Export (T1/T2, L1–L3 & total, Wh/kWh/varh/kvarh)
- Active Power (total & pro Phase)
- Frequency
- …
- Communication interfaces: M-Bus, Modbus RTU RS485, TCP, web server, Direct-http, S0 pulse output
- LoRaWAN Class C device
- LoRaWAN version 1.0.3, RP001 Regional Parameters 1.0.3 revision A
- External Antenna: Switchable (depending on model)
- Size: Body: 90 × 91 × 72mm
- Weight: Body: ca. 350g
- Operating Temperature Range: -25°C … 70°C
Documents
- User Manual EMU Professional II (2025-11-20)
- Manual EMU Professional II Lora (2025-11-20)
- Datasheet EMU Professional II Lora (2025-11-20)
Link
Ordering Info
- Meter:
P21A000LE- EMU Professional II 3/5 LoRa interne und externe Antenne (SMA) - Clamps: 3x 942226 TQ40-C 250/1°
- Antenna: 12417 Antenne LoRa
Device specific Information
- Don’t forget to select “Class C device” when adding to TTN
- go to LoRa Payload Generator to configure meter, select the required points and intervals
- Deactivate
Energy per Tarif, then all the measurements will vom on T1 (Tarif 1). Otherwise we have to read two measurements (T1 & T2)
Get DEV-EUI, AppEUI and AppKey
- press button
->until settings-page - then press
vuntil you see “LoRa DevEUI” - a further press on
vbrings you to the AppKey, so see it, you have to press theservicebutton on upper right below red plate shortly with a thin screwdriver. - JoinEUI (formerly AppEUI):
10 2C EF 00 00 00 00 00on every meter Change in settings the Antanna to
Externalif needed- screwdriver-press on
servicebutton on upper right below red plate shortly to enter settings vbutton to change toExternal- long press with screwdriver until settings are applied, then release
- screwdriver-press on
Sampling Interval and Measurement Selection
You can configure the device via a LoRaWAN downlink and determine which measured values are to be transmitted.
- EMU provides an online Payload Generator that generates the hex code for the configuration.
- This hex code can then be sent to the device via TTN downlink (in the console under ‘Messaging - Downlink’).
- You can send the telegrams to different slots (Fport 1 to 10). This gives you the possibility of sending the energy every 15 minutes (configuration Fport 1) and sending another value to Fport 2 that is only to be reported daily, for example.
Examples “Active Energy Import T1 in kWh” with different intervals:
- 5 Minutes:
05 00 08 1C B2 - 10 Minutes:
0A 00 08 1C 60 - 15 Minutes:
0F 00 08 1C 2E - 60 Minutes:
3C 00 08 1C BD - 24 Hours:
10 0E 08 1C B7
A slot can get deactivated by sending 00 00 00 00
Original Payload formatter EMU
/**
* MIT License
* Copyright (c) 2021 EMU Electronic AG (https://www.emuag.ch/). All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/**
* decodeUplink is called by TheThingsNetwork
* we use our parsePayload() for decoding
*
* @param {*} input
* @returns object containing decoded payload
* {
* "Active Energy Export T1": {
* "unit": "Wh",
* "value": 0
* },
* "Active Energy Export T2": {
* "unit": "Wh",
* "value": 0
* },
* "Active Energy Import T1": {
* "unit": "Wh",
* "value": 4000
* },
* "Active Energy Import T2": {
* "unit": "Wh",
* "value": 0
* },
* "Reactive Energy Export T1": {
* "unit": "varh",
* "value": 0
* },
* "Reactive Energy Export T2": {
* "unit": "varh",
* "value": 0
* },
* "Reactive Energy Import T1": {
* "unit": "varh",
* "value": 0
* },
* "Reactive Energy Import T2": {
* "unit": "varh",
* "value": 0
* },
* "medium": {
* "desc": "Electricity",
* "type": 1
* },
* "readoutInterval": 900,
* "timeStamp": 1635499020,
* "timestamp": {
* "unit": "seconds",
* "value": 1635499020
* }
*/
function decodeUplink(input) {
data = input.bytes;
//uplink with only 2 bytes is only status update, ignore it
if(data.length<=2){
return {};
}
var obj = {};
//check CRC-8 which resides at the end
crc8Received = data[data.length - 1];
dataToCheck = [];
for(var i = 0; i < data.length - 1; i++){
dataToCheck.push(data[i]);
}
if (crc8_encode(dataToCheck).toString(16) === crc8Received.toString(16)) {
//crc-8 seems ok,
} else {
obj.warnings = ['crc-8 wrong'];
//perhaps decide to stop further processing if crc-8 is wrong
}
//first 4 bytes are allways the timestamp, this is the timestamp from the datalogger
var timeStamp = getUint32(data);
obj.data = parsePayload(data);
//for TTN we strip unused information
for(var property in obj.data){
delete obj.data[property].cfgdescription;
delete obj.data[property].cfgtariff;
delete obj.data[property].cfgunit;
delete obj.data[property].cfgorder;
delete obj.data[property].order;
}
obj.data.timeStamp = timeStamp;
obj.data.medium = {
"type": 1,
"desc": "Electricity"
};
return obj;
}
/**
* Decode is called by Chirpstack
* @param {*} fPort
* @param {*} data
* @param {*} variables
* @returns object containing decoded payload
*
* {
* "Active Energy Import T1": {
* "unit": "Wh",
* "cfgdescription": 3,
* "cfgunit": 1,
* "cfgtariff": 1,
* "order": 3,
* "value": 1809
* },
* "Active Energy Import T2": {
* "unit": "Wh",
* "cfgdescription": 3,
* "cfgunit": 1,
* "cfgtariff": 2,
* "order": 4,
* "value": 128
* },
* "Active Energy Export T1": {
* "unit": "Wh",
* "cfgdescription": 5,
* "cfgunit": 1,
* "cfgtariff": 1,
* "order": 5,
* "value": 1149
* },
* "Active Energy Export T2": {
* "unit": "Wh",
* "cfgdescription": 5,
* "cfgunit": 1,
* "cfgtariff": 2,
* "order": 6,
* "value": 17794
* },
* "Reactive Energy Import T1": {
* "unit": "varh",
* "cfgdescription": 10,
* "cfgunit": 5,
* "cfgtariff": 1,
* "order": 7,
* "value": 1864
* },
* "Reactive Energy Import T2": {
* "unit": "varh",
* "cfgdescription": 10,
* "cfgunit": 5,
* "cfgtariff": 2,
* "order": 8,
* "value": 2600
* },
* "Reactive Energy Export T1": {
* "unit": "varh",
* "cfgdescription": 13,
* "cfgunit": 5,
* "cfgtariff": 1,
* "order": 9,
* "value": 338
* },
* "Reactive Energy Export T2": {
* "unit": "varh",
* "cfgdescription": 13,
* "cfgunit": 5,
* "cfgtariff": 2,
* "order": 10,
* "value": 9661
* },
* "timeStamp": 1635499800,
* "medium": {
* "type": 1,
* "desc": "Electricity"
* },
* "readoutInterval": 900
* }
*/
function Decode(fPort, data, variables) {
//uplink with only 2 bytes is only status update, ignore it
if (data.length <= 2) {
return {};
}
var obj = {};
//check CRC-8 which resides at the end
crc8Received = data[data.length - 1];
dataToCheck = [];
for(var i = 0; i < data.length - 1; i++){
dataToCheck.push(data[i]);
}
if (crc8_encode(dataToCheck).toString(16) === crc8Received.toString(16)) {
//crc-8 seems ok,
} else {
obj.warnings = ['crc-8 wrong'];
//perhaps decide to stop further processing if crc-8 is wrong
}
//first 4 bytes are allways the timestamp, this is the timestamp from the datalogger
var timeStamp = getUint32(data);
obj = parsePayload(data);
obj.timeStamp = timeStamp;
//add a human readable timestamp to the payload
var meterDate = new Date(timeStamp * 1000);
var options = { timeZone:'Europe/Berlin', weekday: 'short', year: 'numeric', month: 'short', day: 'numeric', hour:'numeric', minute:'numeric', second:'numeric'};
obj.timeStampReadable = meterDate.toLocaleString('de-CH',options);
obj.medium = {
"type": 1,
"desc": "Electricity"
};
//Default readout-interval is allways 15 minutes
obj.readoutInterval = (15 * 60); //15 Min * 60 Sec
//you can overwrite the readout-interval when defining variables for this meter
if(variables !== null && variables.readoutInterval !== null){
obj.readoutInterval = variables.readoutInterval;
}
return obj;
}
/**
* encodeDownlink is called by TheThingsNetwork
* @param {*} data Object containing configuration
* @returns binary data
*/
function encodeDownlink(data){
/**
* Example JSON-Object for Timestamp, Energy 0x03-0x0A
* {
* "fPort": 1,
* "timeInterval": 15,
* "sndAck": true,
* "startReJoin": false,
* "portIsActive": true,
* "values": [
* 1,
* 3,
* 4,
* 5,
* 6,
* 7,
* 8,
* 9,
* 10
* ]
* }
*
*/
//fPort must be defined else define it
if (data.data.fPort === null || data.data.fPort === undefined){
data.data.fPort = 1;
}
fPort = data.data.fPort;
bytes = [];
//just call the Encode function
bytes = Encode(fPort, data.data, {});
return {fPort: fPort, bytes: bytes};
}
/**
* decodeDownlink is used by TheThingsNetwork
* @param {*} input binary data containing configuration
* @returns data object containing decoded configuration
*/
function decodeDownlink(input) {
var data = {};
data.fPort = input.fPort;
if(input.bytes.length > 3){
var i = 0;
data.timeInterval = Number(getInt16([input.bytes[i++], input.bytes[i++]]));
configFlag = input.bytes[i++];
//sndAck activated ?
if (configFlag & 0x02) {
data.sndAck = true;
}
else {
data.sndAck = false;
}
//start a rejoin after receiving this uplink ?
if (configFlag & 0x04) {
data.startReJoin = true;
}
else {
data.startReJoin = false;
}
//is this uplink on this port activated ?
if (configFlag & 0x08) {
data.portIsActive = true;
}
else {
data.portIsActive = false;
}
data.values = []
for (i; i < input.bytes.length - 1; ++i) {
data.values.push(Number(getUint8(input.bytes[i])));
}
}
return data;
}
/**
* Encode is called by Chirpstack
* @param {*} fPort
* @param {*} data Object containing configuration
* @param {*} variables
* @returns binary data
*/
function Encode(fPort, data, variables) {
/**
* Example JSON-Object for Timestamp, Energy 0x03-0x0A
* {
* "fPort": 1,
* "timeInterval": 15,
* "sndAck": true,
* "startReJoin": false,
* "portIsActive": true,
* "values": [
* 1,
* 3,
* 4,
* 5,
* 6,
* 7,
* 8,
* 9,
* 10
* ]
* }
*
*/
bytes = [];
//make sure the time is valid and between 1 and 65535!
data.timeInterval = Math.min(data.timeInterval, 0xFFFF);
data.timeInterval = Math.max(data.timeInterval,1 );
//push second byte to first position
bytes.push(data.timeInterval & 0X00FF);
//push first byte to second pposition
bytes.push(data.timeInterval >> 8);
var configFlags = 0x00;
//Send Acknowledge for each Uplink back
if (data.sndAck) {
configFlags |= 0x02;
}
//Start Re-Join
if (data.startReJoin) {
configFlags |= 0x04;
}
//Enable this port so it sends data
if (data.portIsActive) {
configFlags |= 0x08;
}
//Push the config flag on the stack
bytes.push(configFlags);
for(var i=0; i< data.values.length; i++) {
bytes.push(data.values[i]);
}
//apply crc-8
crc8 = crc8_encode(bytes);
bytes.push(crc8);
return bytes;
}
/**
* read 1 byte of data an convert it to an Uint8
* @param {*} data
* @returns
*/
function getUint8(data) {
var value = data >>> 0;
return value;
}
function flip(n) {
var x = [];
n = Number(n);
//will work only for positive numbers
var single = n.toString(2).split("");
for(var i = 0; i<single.length; i++){
x.push(single[i] == 1 ? 0 : 1);
}
var tmp = x.join("");
var y = (parseInt(tmp, 2) + 1) * -1;
return y;
}
/**
* read 1 byte of data an convert it to an Int8
* @param {*} data
* @returns
*/
function getInt8(data) {
if(data === 0){return 0;}
if(data >> 7 == 1){
return flip(data);
}
var value = data >>> 0;
return value;
}
/**
* read 2 bytes of data an convert it to an Int16
* @param {*} data
* @returns
*/
function getInt16(data) {
value = (data[1] << 8 | data[0]);
return value;
}
/**
* read 2 bytes of data an convert it to an Uint16
* @param {*} data
* @returns
*/
function getUint16(data) {
value = (data[1] << 8 | data[0]) >>> 0;
return value;
}
/**
* read 4 bytes of data an convert it to an Int32
* @param {*} data
* @returns
*/
function getInt32(data) {
value = (data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]);
return value;
}
/**
* * read 4 bytes of data an convert it to an Uint32
* @param {*} data
* @returns
*/
function getUint32(data) {
value = (data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]) >>> 0;
return value;
}
/**
* read 8 bytes of data an convert it to an Int64
* @param {*} data
* @returns
*/
function getInt64(data) {
//JS can't handle bitwise operation with more than 32bit !
//so this won't work
//if Chirpstack will use another javascript engine we could use typearray's
var value = Number((data[7] << 56 | data[6] << 48 | data[5] << 40 | data[4] << 32 | data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]));
return value;
}
/**
* * read 8 bytes of data an convert it to an Uint32
* @param {*} data
* @returns
*/
function getUint64(data) {
//JS can't handle bitwise operation with more than 32bit !
//so this won't work
//if Chirpstack will use another javascript engine we could use typearray's
value = Number((data[7] << 56 | data[6] << 48 | data[5] << 40 | data[4] << 32 | data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]) >>> 0);
return value;
}
function getBCD(data) {
var bcd = "";
for(var i=0; i< data.length; i++) {
bcd = bcd + "" + data[i];
}
return bcd;
}
function getASCII(data) {
var ascii = "";
for(var i=0; i< data.length; i++) {
entry = getUint8(data[i]);
if (entry != 0x00) {
ascii = ascii + String.fromCharCode(entry.toString());
}
}
return ascii;
}
/**
* parses the variable data and returns an object
*
* a value is identified by its id
*
* @param {*} obj
* @param {*} data
*/
function parsePayload(data){
var dataTypes = [];
//be sure to fill the complete array
//if we receive an invalid datatype we skip the rest of the data
for (i = 0; i < 256; i++) {
dataTypes[i] = {'len': 255,'description': 'invalid data-type'};
}
//the "order" is assigned according to the entry
dataTypes[0x00]={'len':4,'description':'data-logger-index','dataType':'Uint32'};
dataTypes[0x01]={'len':4,'description':'timestamp','dataType':'Uint32','unit':'seconds'};
dataTypes[0x02]={'len':4,'description':'timestamp-previous','dataType':'Uint32','unit':'seconds'};
dataTypes[0x03]={'len':4,'description':'ActiveEnergyImportT1','dataType':'Uint32','unit':'Wh','cfgdescription':3,"cfgunit":1,'cfgtariff':1};
dataTypes[0x04]={'len':4,'description':'ActiveEnergyImportT2','dataType':'Uint32','unit':'Wh','cfgdescription':3,"cfgunit":1,'cfgtariff':2};
dataTypes[0x05]={'len':4,'description':'ActiveEnergyExportT1','dataType':'Uint32','unit':'Wh','cfgdescription':5,"cfgunit":1,'cfgtariff':1};
dataTypes[0x06]={'len':4,'description':'ActiveEnergyExportT2','dataType':'Uint32','unit':'Wh','cfgdescription':5,"cfgunit":1,'cfgtariff':2};
dataTypes[0x07]={'len':4,'description':'ReactiveEnergyImportT1','dataType':'Uint32','unit':'varh','cfgdescription':10,"cfgunit":5,'cfgtariff':1};
dataTypes[0x08]={'len':4,'description':'ReactiveEnergyImportT2','dataType':'Uint32','unit':'varh','cfgdescription':10,"cfgunit":5,'cfgtariff':2};
dataTypes[0x09]={'len':4,'description':'ReactiveEnergyExportT1','dataType':'Uint32','unit':'varh','cfgdescription':13,"cfgunit":5,'cfgtariff':1};
dataTypes[0x0A]={'len':4,'description':'ReactiveEnergyExportT2','dataType':'Uint32','unit':'varh','cfgdescription':13,"cfgunit":5,'cfgtariff':2};
dataTypes[0x0B]={'len':4,'description':'ActivePowerL123','dataType':'Int32','unit':'W','cfgdescription':25,"cfgunit":13};
dataTypes[0x0C]={'len':4,'description':'ActivePowerL1','dataType':'Int32','unit':'W','cfgdescription':25,"cfgunit":13,'cfgphase':1};
dataTypes[0x0D]={'len':4,'description':'ActivePowerL2','dataType':'Int32','unit':'W','cfgdescription':25,"cfgunit":13,'cfgphase':2};
dataTypes[0x0E]={'len':4,'description':'ActivePowerL3','dataType':'Int32','unit':'W','cfgdescription':25,"cfgunit":13,'cfgphase':3};
dataTypes[0x0F]={'len':4,'description':'CurrentL123','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28};
dataTypes[0x10]={'len':4,'description':'CurrentL1','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28,'cfgphase':1};
dataTypes[0x11]={'len':4,'description':'CurrentL2','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28,'cfgphase':2};
dataTypes[0x12]={'len':4,'description':'CurrentL3','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28,'cfgphase':3};
dataTypes[0x13]={'len':4,'description':'CurrentN','dataType':'Int32','unit':'mA','cfgdescription':31,"cfgunit":28,'cfgphase':4};
dataTypes[0x14]={'len':4,'description':'VoltageL1-N','dataType':'Int32','unit':'V/10','unit_calculated':'V','factor':0.1,'fixed':1,'cfgdescription':30,"cfgunit":26,'cfgphase':1};
dataTypes[0x15]={'len':4,'description':'VoltageL2-N','dataType':'Int32','unit':'V/10','unit_calculated':'V','factor':0.1,'fixed':1,'cfgdescription':30,"cfgunit":26,'cfgphase':2};
dataTypes[0x16]={'len':4,'description':'VoltageL3-N','dataType':'Int32','unit':'V/10','unit_calculated':'V','factor':0.1,'fixed':1,'cfgdescription':30,"cfgunit":26,'cfgphase':3};
dataTypes[0x17]={'len':1,'description':'PowerfactorL1','dataType':'Int8','unit':'Cos','factor':0.01,'fixed':2,'cfgdescription':32,"cfgunit":31,'cfgphase':1};
dataTypes[0x18]={'len':1,'description':'PowerfactorL2','dataType':'Int8','unit':'Cos','factor':0.01,'fixed':2,'cfgdescription':32,"cfgunit":31,'cfgphase':2};
dataTypes[0x19]={'len':1,'description':'PowerfactorL3','dataType':'Int8','unit':'Cos','factor':0.01,'fixed':2,'cfgdescription':32,"cfgunit":31,'cfgphase':3};
dataTypes[0x1A]={'len':2,'description':'Frequency','dataType':'Int16','unit':'Hz','factor':0.1,'fixed':1,'cfgdescription':33,"cfgunit":32};
dataTypes[0x1B]={'len':4,'description':'ActivePoweraverage','dataType':'Int32','unit':'W',"cfgunit":13,};
dataTypes[0x1C]={'len':4,'description':'ActiveEnergyImportT1kWh','dataType':'Uint32','unit':'kWh','cfgdescription':3,"cfgunit":2,'cfgtariff':1};
dataTypes[0x1D]={'len':4,'description':'ActiveEnergyImportT2kWh','dataType':'Uint32','unit':'kWh','cfgdescription':3,"cfgunit":2,'cfgtariff':2};
dataTypes[0x1E]={'len':4,'description':'ActiveEnergyExportT1kWh','dataType':'Uint32','unit':'kWh','cfgdescription':5,"cfgunit":2,'cfgtariff':1};
dataTypes[0x1F]={'len':4,'description':'ActiveEnergyExportT2kWh','dataType':'Uint32','unit':'kWh','cfgdescription':5,"cfgunit":2,'cfgtariff':2};
dataTypes[0x20]={'len':4,'description':'ReactiveEnergyImportT1kvarh','dataType':'Uint32','unit':'kvarh','cfgdescription':10,"cfgunit":6,'cfgtariff':1};
dataTypes[0x21]={'len':4,'description':'ReactiveEnergyImportT2kvarh','dataType':'Uint32','unit':'kvarh','cfgdescription':10,"cfgunit":6,'cfgtariff':2};
dataTypes[0x22]={'len':4,'description':'ReactiveEnergyExportT1kvarh','dataType':'Uint32','unit':'kvarh','cfgdescription':13,"cfgunit":6,'cfgtariff':1};
dataTypes[0x23]={'len':4,'description':'ReactiveEnergyExportT2kvarh','dataType':'Uint32','unit':'kvarh','cfgdescription':13,"cfgunit":6,'cfgtariff':2};
dataTypes[0x24]={'len':8,'description':'ActiveEnergyImportT164bit','dataType':'uInt64','unit':'Wh','cfgdescription':3,"cfgunit":1,'cfgtariff':1};
dataTypes[0x25]={'len':8,'description':'ActiveEnergyImportT264bit','dataType':'uInt64','unit':'Wh','cfgdescription':3,"cfgunit":1,'cfgtariff':2};
dataTypes[0x26]={'len':8,'description':'ActiveEnergyExportT164bit','dataType':'uInt64','unit':'Wh','cfgdescription':5,"cfgunit":1,'cfgtariff':1};
dataTypes[0x27]={'len':8,'description':'ActiveEnergyExportT264bit','dataType':'uInt64','unit':'Wh','cfgdescription':5,"cfgunit":1,'cfgtariff':2};
dataTypes[0x28]={'len':8,'description':'ReactiveEnergyImportT164bit','dataType':'uInt64','unit':'varh','cfgdescription':10,"cfgunit":5,'cfgtariff':1};
dataTypes[0x29]={'len':8,'description':'ReactiveEnergyImportT264bit','dataType':'uInt64','unit':'varh','cfgdescription':10,"cfgunit":5,'cfgtariff':2};
dataTypes[0x2A]={'len':8,'description':'ReactiveEnergyExportT164bit','dataType':'uInt64','unit':'varh','cfgdescription':13,"cfgunit":5,'cfgtariff':1};
dataTypes[0x2B]={'len':8,'description':'ReactiveEnergyExportT264bit','dataType':'uInt64','unit':'varh','cfgdescription':13,"cfgunit":5,'cfgtariff':2};
dataTypes[0xF0]={'len':1,'description':'errorcode','dataType':'ErrorCode'};
dataTypes[0xF1]={'len':4,'description':'serial-number','dataType':'MeterSerial'};
dataTypes[0xF2]={'len':4,'description':'factor-number','dataType':'MeterSerial'};
dataTypes[0xF3]={'len':2,'description':'current-transformerprimary','dataType':'Uint16',"cfgunit":72,};
dataTypes[0xF4]={'len':2,'description':'current-transformersecondary','dataType':'Uint16',"cfgunit":72,};
dataTypes[0xF5]={'len':2,'description':'voltage-transformerprimary','dataType':'Uint16',"cfgunit":72,};
dataTypes[0xF6]={'len':2,'description':'voltage-transformersecondary','dataType':'Uint16',"cfgunit":72,};
dataTypes[0xF7]={'len':1,'description':'meter-typ','dataType':'Uint8'};
dataTypes[0xF8]={'len':4,'description':'MIDyear','dataType':'BCD',};
dataTypes[0xF9]={'len':4,'description':'factoryyear','dataType':'BCD',};
dataTypes[0xFA]={'len':4,'description':'firmwareversion','dataType':'ASCII'};
dataTypes[0xFB]={'len':4,'description':'mid-Version','dataType':'ASCII'};
dataTypes[0xFC]={'len':4,'description':'manufacturer','dataType':'ASCII'};
dataTypes[0xFD]={'len':4,'description':'hw-index','dataType':'ASCII'};
dataTypes[0xFE]={'len':4,'description':'systemtime','dataType':'Uint32'};
var obj = {};
var i = 4; //the first 4 bytes is allways the timestamp
//the last byte is the crc-code so ignore this one
while (i < (data.length - 1)) {
//extract signature byte
indexOfDataType = data[i];
dataType = dataTypes[indexOfDataType];
i++;
//also save the sort-order value
dataType.order = indexOfDataType;
switch (dataType.dataType) {
case 'Int8':
dataType.value = Number(getInt8([data[i++]]));
break;
case 'Uint8':
dataType.value = Number(getUint8([data[i++]]));
break;
case 'Int16':
dataType.value = Number(getInt16([data[i++], data[i++]]));
break;
case 'Uint16':
dataType.value = Number(getUint16([data[i++], data[i++]]));
break;
case 'Uint32':
dataType.value = Number(getUint32([data[i++], data[i++], data[i++], data[i++]]));
break;
case 'Int32':
dataType.value = Number(getInt32([data[i++], data[i++], data[i++], data[i++]]));
break;
case 'uInt64':
dataType.value = Number(getUint64([data[i++], data[i++], data[i++], data[i++], data[i++], data[i++], data[i++], data[i++]]));
break;
case 'Int64':
dataType.value = Number(getInt64([data[i++], data[i++], data[i++], data[i++], data[i++], data[i++], data[i++], data[i++]]));
break;
case 'MeterSerial':
dataType.value = ('0' + Number(getUint8([data[i++]])).toString(16)).slice(-2);
dataType.value = ('0' + Number(getUint8([data[i++]])).toString(16)).slice(-2) + dataType.value;
dataType.value = ('0' + Number(getUint8([data[i++]])).toString(16)).slice(-2) + dataType.value;
dataType.value = ('0' + Number(getUint8([data[i++]])).toString(16)).slice(-2) + dataType.value;
break;
case 'BCD':
dataType.value = getBCD([data[i++], data[i++], data[i++], data[i++]]);
break;
case 'ASCII':
dataType.value = getASCII([data[i++], data[i++], data[i++], data[i++]]);
break;
case 'ErrorCode':
dataType.value = Number(getUint8([data[i++]]));
//also encode the error
dataType.TimeChanged = dataType.value & 0x01 ? true : false;
dataType.CTRatioChange = dataType.value & 0x02 ? true : false;
dataType.VTRatioChange = dataType.value & 0x04 ? true : false;
dataType.ImpulseWidthChange = dataType.value & 0x08 ? true : false;
dataType.ImpulseRatioChange = dataType.value & 0x10 ? true : false;
dataType.PowerFail = dataType.value & 0x20 ? true : false;
dataType.LogbookFull = dataType.value & 0x80 ? true : false;
break;
default:
break;
}
//if we have a factor apply it but keep the old value
if (dataType.factor && !isNaN(dataType.factor)) {
var fixed = 0;
if (dataType.fixed && !isNaN(dataType.fixed)) {
fixed = dataType.fixed;
}
//save the value which was sent by the meter (perhaps needed later)
dataType.value_raw = dataType.value;
//calculate the new value using the factor
dataType.value = Number((dataType.value * dataType.factor).toFixed(fixed));
}
obj[dataType.description] = dataType;
//remove all unused infos like dataType, description, len
delete dataType.len;
delete dataType.description;
delete dataType.dataType;
delete dataType.factor;
delete dataType.fixed;
}
return obj;
}
function crc8_encode(data) {
var xorOut = 0x0000;
var table = [
0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B,
0x12, 0x15, 0x38, 0x3F, 0x36, 0x31,
0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77,
0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65,
0x48, 0x4F, 0x46, 0x41, 0x54, 0x53,
0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9,
0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF,
0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B,
0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1,
0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0,
0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2,
0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4,
0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE,
0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88,
0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C,
0x35, 0x32, 0x1F, 0x18, 0x11, 0x16,
0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50,
0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42,
0x6F, 0x68, 0x61, 0x66, 0x73, 0x74,
0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80,
0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6,
0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2,
0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8,
0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E,
0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C,
0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A,
0x43, 0x44, 0x19, 0x1E, 0x17, 0x10,
0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26,
0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
0x4E, 0x49, 0x40, 0x47, 0x52, 0x55,
0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F,
0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39,
0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B,
0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D,
0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7,
0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91,
0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5,
0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF,
0xFA, 0xFD, 0xF4, 0xF3
];
var crc = 0x0000;
for (var j = 0; j < data.length; j++) {
crc = table[crc ^ data[j]];
}
return (crc ^ xorOut) & 0xFFFF;
}
Adapted Payload formatter HSLU for only one value with specific name
/**
* Simplified TTN Decoder - Extract Active Energy Import T1 in kWh
*/
function decodeUplink(input) {
var data = input.bytes;
// Uplink with only 2 bytes is status update, ignore it
if (data.length <= 2) {
return {
data: {},
warnings: ["Payload too short"]
};
}
// Check CRC-8 (last byte)
var crc8Received = data[data.length - 1];
var dataToCheck = data.slice(0, -1);
if (crc8_encode(dataToCheck) !== crc8Received) {
return {
data: {},
warnings: ["CRC-8 validation failed"]
};
}
// Search for Active Energy Import T1 kWh (ID: 0x1C) or Wh (ID: 0x03)
var energy_kWh = null;
var i = 4; // Skip first 4 bytes (timestamp)
while (i < data.length - 1) { // Stop before CRC byte
var dataTypeId = data[i];
i++;
if (dataTypeId === 0x1C) {
// Found Active Energy Import T1 in kWh (4 bytes, Uint32)
energy_kWh = getUint32(data.slice(i, i + 4));
break;
} else if (dataTypeId === 0x03) {
// Found Active Energy Import T1 in Wh (4 bytes, Uint32)
var energy_Wh = getUint32(data.slice(i, i + 4));
energy_kWh = energy_Wh / 1000;
break;
} else {
// Skip this value based on known lengths
var length = getDataTypeLength(dataTypeId);
if (length === 255) break; // Invalid data type
i += length;
}
}
// Return result
if (energy_kWh !== null) {
return {
data: {
energy_kWh_inc: energy_kWh
}
};
} else {
return {
data: {},
warnings: ["Active Energy Import T1 not found in payload"]
};
}
}
/**
* Get data type length for skipping unknown values
*/
function getDataTypeLength(id) {
var lengths = {
0x00: 4, 0x01: 4, 0x02: 4, 0x03: 4, 0x04: 4, 0x05: 4,
0x06: 4, 0x07: 4, 0x08: 4, 0x09: 4, 0x0A: 4, 0x0B: 4,
0x0C: 4, 0x0D: 4, 0x0E: 4, 0x0F: 4, 0x10: 4, 0x11: 4,
0x12: 4, 0x13: 4, 0x14: 4, 0x15: 4, 0x16: 4, 0x17: 1,
0x18: 1, 0x19: 1, 0x1A: 2, 0x1B: 4, 0x1C: 4, 0x1D: 4,
0x1E: 4, 0x1F: 4, 0x20: 4, 0x21: 4, 0x22: 4, 0x23: 4,
0x24: 8, 0x25: 8, 0x26: 8, 0x27: 8, 0x28: 8, 0x29: 8,
0x2A: 8, 0x2B: 8, 0xF0: 1, 0xF1: 4, 0xF2: 4, 0xF3: 2,
0xF4: 2, 0xF5: 2, 0xF6: 2, 0xF7: 1, 0xF8: 4, 0xF9: 4,
0xFA: 4, 0xFB: 4, 0xFC: 4, 0xFD: 4, 0xFE: 4
};
return lengths[id] || 255;
}
/**
* Read 4 bytes as Uint32 (little-endian)
*/
function getUint32(data) {
return (data[3] << 24 | data[2] << 16 | data[1] << 8 | data[0]) >>> 0;
}
/**
* CRC-8 calculation
*/
function crc8_encode(data) {
var table = [
0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31,
0x24, 0x23, 0x2A, 0x2D, 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65,
0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, 0xE0, 0xE7, 0xEE, 0xE9,
0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1,
0xB4, 0xB3, 0xBA, 0xBD, 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2,
0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, 0xB7, 0xB0, 0xB9, 0xBE,
0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16,
0x03, 0x04, 0x0D, 0x0A, 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42,
0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, 0x89, 0x8E, 0x87, 0x80,
0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8,
0xDD, 0xDA, 0xD3, 0xD4, 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C,
0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, 0x19, 0x1E, 0x17, 0x10,
0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F,
0x6A, 0x6D, 0x64, 0x63, 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B,
0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, 0xAE, 0xA9, 0xA0, 0xA7,
0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF,
0xFA, 0xFD, 0xF4, 0xF3
];
var crc = 0x00;
for (var j = 0; j < data.length; j++) {
crc = table[crc ^ data[j]];
}
return crc;
}