

StromGT: A planning tool for reducing electricity consumption in building automation and control systems

Philipp Kräuchi, Prof. Dr. Olivier Steiger Lucerne University of Applied Sciences and Arts Engineering & Architecture

With the Support of

Introduction

Electricity consumption by Building Automation and Control Systems (BACS) is often underestimated. Since 2013, the Lucerne University of Applied Sciences and Arts has led SFOE-supported projects to quantify this consumption ([1], [2], [3]) and to develop the planning tool *StromGT*.

Tool and methodology

StromGT is a free Excel-based tool with embedded VBA macros, available in German, English, and French ([4], [5]). It is preconfigured for the typical building services heating, cooling, ventilation, lighting, and shading. While it focuses on BACS, it can also include non-BACS devices (e.g., light bulbs, heat pumps). Planners can freely define included devices and services — even custom ones like access control.

Key features include:

- Modelling electricity consumption of BACS and other systems.
- Supply loss modelling across the entire power supply tree.
- Minimal input via smart defaults.
- Aggregation by device type, building service, and BACS relevance.
- Interactive tables and graphs for results.

The tool uses a device-level model with active/standby states and multiple power inputs.

Case study

In Roche Building 1 (Basel) ([6], [7]), a Minergie-certified highrise using groundwater and waste heat for heating and cooling, BACS electricity use was assessed relative to total building services (heating, cooling, ventilation, lighting, shading):

- Realised system: BACS accounted for 21% (3.6 kWh/m²) of annual services electricity.
- Optimised system: Reduced to 8 % (1.2 kWh/m²), resulting in 66 % savings.

Engineering and ArchitectureBuilding Technology and Energy

High savings potential was identified in actuators, controllers, lighting components, and power supplies (Figure 1). Heating/cooling valve actuators showed high standby losses, while ventilation and shading motors avoided them via 3-point control.

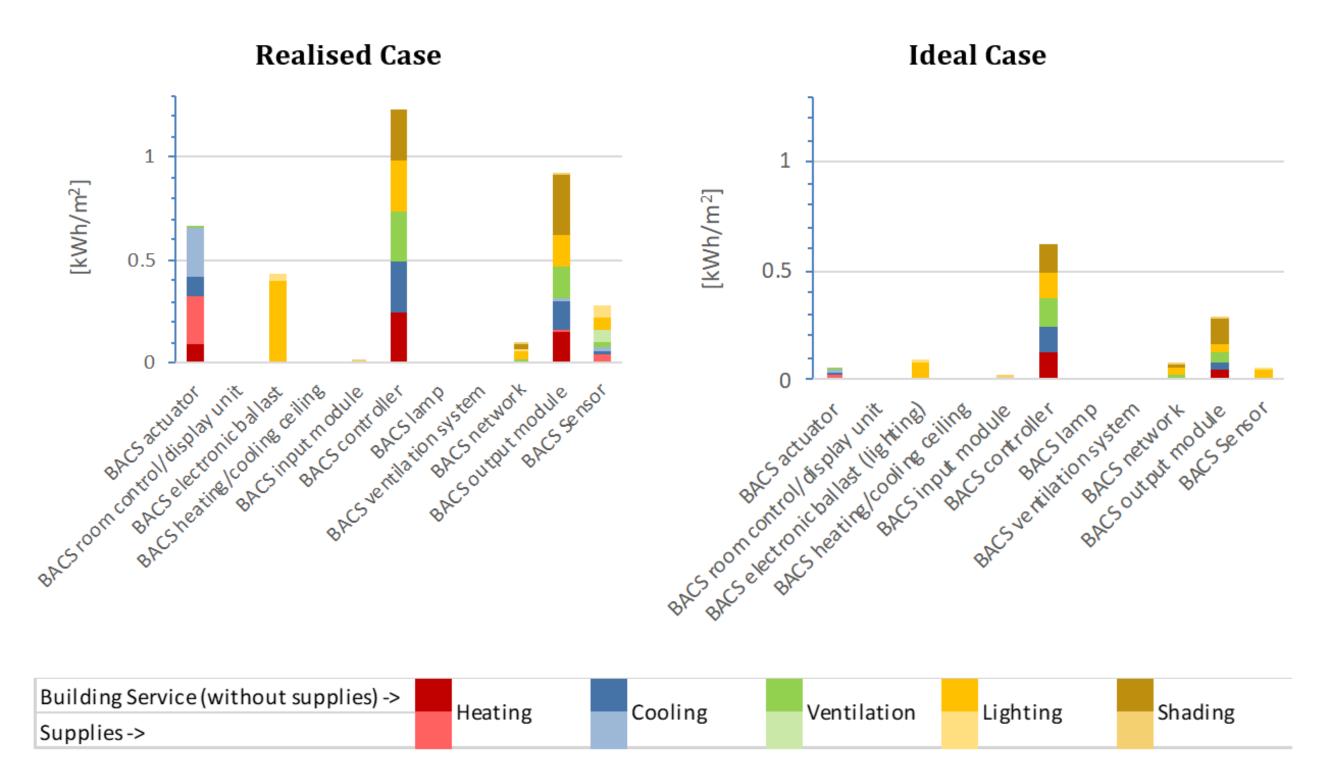


Figure 1: BACS annual electricity consumption by device type and building service.

Challenges in addressing BACS electricity consumption

- Missing client requirements: Owners rarely define targets or request calculations. Yet, owners could define annual limits (kWh/m²) and idle/standby thresholds for systems and devices.
- Regulatory gaps: Few binding standards; SIA 2056 offers reference values but lacks enforcement ([8], [9]).
- Incomplete product data: Typical power consumption values often unavailable; standardisation needed.

The authors recommend incorporating BACS electricity consumption into building labels (e.g., Minergie, SNBS); standardising product datasheets with power consumption values representative of typical usage scenarios; utilising power properties in classification systems (e.g., ETIM, ECLASS); and creating product databases based on these classification systems through automated data integration.

Contact

Lucerne University of Applied Sciences and Arts Engineering & Architecture Institute of Building Technology and Energy Philipp Kräuchi T: +41 41 349 32 24 philipp.kraeuchi@hslu.ch

References

- [1] Kräuchi P, Jurt D and Dahinden C 2016 *Eigenenergieverbrauch der Gebäudeautomation* (*EEV-GA*) (Bern: BFE) Available at https://www.bfe.admin.ch/bfe/en/home/news-and-media/publications.html (Ac-
- cessed: 15 May 2025)
 [2] Kräuchi P, Dahinden C, Jurt D, Wouters V, Menti U-P and Steiger O 2017 *Electricity consumption of building automation*. *Energy Procedia* 122 295–300 https://doi.org/10.1016/j.egypro.2017.07.325
- [3] Kräuchi P 2022 Musterbeispiele von Gebäudeautomationssystemen mit geringem Stromverbrauch (Bern: BFE) Available at https://www.bfe.admin.ch/bfe/en/home/news-and-media/publications.html (Accessed: 15 May 2025)
- [4] Lucerne University of Applied Sciences and Arts. *StromGT Public*. Available at: https://hslu-ige-laes.github.io/StromGTPublic/ (Accessed: 15 May 2025)
- [5] Kräuchi P and Steiger O 2019 Electricity consumption of building technology: a calculation method. J. Phys.: Conf. Ser. 1343 012125 https://doi.org/10.1088/1742-6596/1343/1/012125
- [6] Herzog & de Meuron Basel Ltd. *Projects.* Available at: https://www.herzogdemeuron.com/projects/345-roche-building-1/ (Accessed: 26 June 2025)
- [7] Kräuchi P and Steiger O 2020 Stromverbrauch der Gebäudeautomation: eine Fallstudie. Brenet Status-Seminar (Aarau: Brenet) https://zenodo.org/records/3900180
- [8] Swiss Society of Engineers and Architects 2019 SIA 2056: Elektrizität in Gebäuden Energieund Leistungsbedarf (Zurich: SIA)
- [9] European Union 2019 Commission Regulation (EU) 2019/1782 of 1 October 2019 laying down ecodesign requirements for external power supplies pursuant to Directive 2009/125/EC of the European Parliament and of the Council (Official Journal of the European Union L 272, 25 October 2019)